Hydrogen Sulfide Inhibits Formaldehyde-Induced Endoplasmic Reticulum Stress in PC12 Cells by Upregulation of SIRT-1
نویسندگان
چکیده
BACKGROUND Formaldehyde (FA), a well-known environmental pollutant, has been classified as a neurotoxic molecule. Our recent data demonstrate that hydrogen sulfide (H2S), the third gaseous transmitter, has a protective effect on the neurotoxicity of FA. However, the exact mechanisms underlying this protection remain largely unknown. Endoplasmic reticulum (ER) stress has been implicated in the neurotoxicity of FA. Silent mating type information regulator 2 homolog 1 (SIRT-1), a histone deacetylases, has various biological activities, including the extension of lifespan, the modulation of ER stress, and the neuroprotective action. OBJECTIVE We hypothesize that the protection of H2S against FA-induced neurotoxicity involves in inhibiting ER stress by upregulation of SIRT-1. The present study attempted to investigate the protective effect of H2S on FA-induced ER stress in PC12 cells and the contribution of SIRT-1 to the protection of H2S against FA-induced injuries, including ER stress, cytotoxicity and apoptosis. PRINCIPAL FINDINGS We found that exogenous application of sodium hydrosulfide (NaHS; an H2S donor) significantly attenuated FA-induced ER stress responses, including the upregulated levels of glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 expression. We showed that NaHS upregulates the expression of SIRT-1 in PC12 cells. Moreover, the protective effects of H2S on FA-elicited ER stress, cytotoxicity and apoptosis were reversed by Sirtinol, a specific inhibitor of SIRT-1. CONCLUSION/SIGNIFICANCE These data indicate that H2S exerts its protection against the neurotoxicity of FA through overcoming ER stress via upregulation of SIRT-1. Our findings provide novel insights into the protective mechanisms of H2S against FA-induced neurotoxicity.
منابع مشابه
Hydrogen Sulfide Inhibits Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior by Upregulation of Sirt-1: Involvement in Suppression of Hippocampal Endoplasmic Reticulum Stress
Background Hydrogen sulfide (H2S) is a crucial signaling molecule with a wide range of physiological functions. Previously, we confirmed that stress-induced depression is accompanied with disturbance of H2S generation in hippocampus. The present work attempted to investigate the inhibitory effect of H2S on chronic unpredictable mild stress-induced depressive-like behaviors and the underlying me...
متن کاملEffects of hydrogen peroxide-induced oxidative stress on the pattern of pro-apoptotic and anti-apoptotic genes expression during PC12 cells differentiation
Background and Objective: In neurodegenerative disorders, oxidative stress mediated by reactive oxygen species is strongly associated with increased neuronal damages that lead to apoptosis. Pro-apoptotic and anti-apoptotic gene expressions were changed during cell differentiation that affect cell viability and differentiation. This study was conducted to determine the effects of hydrogen peroxi...
متن کاملA Novel Mechanism of Formaldehyde Neurotoxicity: Inhibition of Hydrogen Sulfide Generation by Promoting Overproduction of Nitric Oxide
BACKGROUND Formaldehyde (FA) induces neurotoxicity by overproduction of intracellular reactive oxygen species (ROS). Increasing studies have shown that hydrogen sulfide (H(2)S), an endogenous gastransmitter, protects nerve cells against oxidative stress by its antioxidant effect. It has been shown that overproduction of nitric oxide (NO) inhibits the activity of cystathionine-beta-synthase (CBS...
متن کاملBDNF-TrkB Pathway Mediates Neuroprotection of Hydrogen Sulfide against Formaldehyde-Induced Toxicity to PC12 Cells
Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprot...
متن کاملHydrogen sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced endoplasmic reticulum stress.
Endoplasmic reticulum (ER) stress has been implicated in several neurodegenerative diseases, including Parkinson's disease. The present study attempted to investigate the effect of hydrogen sulfide (H(2)S) on 6-hydroxydopamine (6-OHDA)-induced ER stress in SH-SY5Y cells. We found in the present study that exogenous application of sodium hydrosulfide (NaHS; an H(2)S donor, 100 μM) significantly ...
متن کامل